Learning Latent Super-Events to Detect Multiple Activities in Videos

نویسندگان

  • A. J. Piergiovanni
  • Michael S. Ryoo
چکیده

In this paper, we introduce the concept of learning latent super-events from activity videos, and present how it benefits activity detection in continuous videos. We define a super-event as a set of multiple events occurring together in videos with a particular temporal organization; it is the opposite concept of sub-events. Real-world videos contain multiple activities and are rarely segmented (e.g., surveillance videos), and learning latent super-events allows the model to capture how the events are temporally related in videos. We design temporal structure filters that enables the model to focus on particular sub-intervals of the videos, and use them together with a soft attention mechanism to learn representations of latent super-events. Super-event representations are combined with per-frame or per-segment CNNs to provide frame-level annotations. Our approach is designed to be fully differentiable, enabling an end-to-end learning of latent super-event representations jointly with the activity detector using them. Our experiments with multiple public video datasets confirm that the proposed concept of latent super-event learning significantly benefits activity detection, advancing the state-of-the-arts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Latent Sub-events in Activity Videos Using Temporal Attention Filters

In this paper, we newly introduce the concept of temporal attention filters, and describe how they can be used for human activity recognition from videos. Many high-level activities are often composed of multiple temporal parts (e.g., sub-events) with different duration/speed, and our objective is to make the model explicitly consider such temporal structure using multiple temporal filters. Our...

متن کامل

Privacy-Preserving Egocentric Activity Recognition from Extreme Low Resolution

Privacy protection from video taken by wearable cameras is an important societal challenge. We desire a wearable vision system that can recognize human activities, yet not disclose the identity of the participants. Video anonymization is typically handled by decimating the image to a very low resolution. Activity recognition, however, generally requires resolution high enough that features such...

متن کامل

Probabilistic Motion Segmentation of Videos for Temporal Super Resolution

A novel scheme is proposed for achieving motion segmentation in low-frame rate videos, with application to temporal super resolution. Probabilistic generative models are commonly used to perform unsupervised motion segmentation in videos. While they provide a general and elegant framework, they are hampered by severe local minima problems and often converge to inaccurate solutions, when there a...

متن کامل

Finding “It”: Weakly-Supervised Reference-Aware Visual Grounding in Instructional Videos

Grounding textual phrases in visual content with standalone image-sentence pairs is a challenging task. When we consider grounding in instructional videos, this problem becomes profoundly more complex: the latent temporal structure of instructional videos breaks independence assumptions and necessitates contextual understanding for resolving ambiguous visual-linguistic cues. Furthermore, dense ...

متن کامل

Activity understanding and unusual event detection in surveillance videos

Computer scientists have made ceaseless efforts to replicate cognitive video understanding abilities of human brains onto autonomous vision systems. As video surveillance cameras become ubiquitous, there is a surge in studies on automated activity understanding and unusual event detection in surveillance videos. Nevertheless, video content analysis in public scenes remained a formidable challen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.01938  شماره 

صفحات  -

تاریخ انتشار 2017